Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2310791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299804

RESUMO

Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport. This work proposes a concept for nanofluidic channels with a simultaneous dual electrostatic effect that can enhance both ion selectivity and flux. To actualize this, this work has synthesized propidium iodide-based two-dimensional polymer (PI-2DP) membranes possessing both skeleton charge and intrinsic space charge, which are spatially aligned along the ion transport pathway. The dual charge design of PI-2DP significantly enhances the electrostatic interaction between the translocating anions and the cationic polymer framework, and a high anion selectivity coefficient (≈0.8) is reached. When mixing standard artificial seawater and river water, this work achieves a considerable power density of 48.4 W m-2, outperforming most state-of-the-art nanofluidic membranes. Moreover, when applied between the Mediterranean Sea and the Elbe River, an output power density of 42.2 W m-2 is achieved by the PI-2DP. This nanofluidic membrane design with dual-layer charges will inspire more innovative development of ion-selective channels for blue energy conversion that will contribute to global energy consumption.

2.
ChemSusChem ; 17(7): e202301170, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062976

RESUMO

Due to the drastic required thermodynamical requirements, a photoelectrode material that can function as both a photocathode and a photoanode remains elusive. In this work, we demonstrate for the first time that, under simulated solar light and without co-catalysts, donor-acceptor conjugated acetylenic polymers (CAPs) exhibit both impressive oxygen evolution (OER) and hydrogen evolution (HER) photocurrents in alkaline and neutral medium, respectively. In particular, poly(2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine) (pTET) provides a benchmark OER photocurrent density of ~200 µA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE) at pH 13 and a remarkable HER photocurrent density of ~190 µA cm-2 at 0.3 V vs. RHE at pH 6.8. By combining theoretical investigations and electrochemical-operando Resonance Raman spectroscopy, we show that the OER proceeds with two different mechanisms, with the electron-depleted triple bonds acting as single-site OER in combination with the C4-C5 atoms of the phenyl rings as dual sites. The HER, instead, occurs via an electron transfer from the tri-acetylenic linkages to the triazine rings, which act as the HER active sites. This work represents a novel application of organic-based materials and contributes to the development of high-performance photoelectrochemical catalysts for the solar fuels' generation.

3.
Chemistry ; 28(20): e202104502, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35157327

RESUMO

The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.

4.
Nanoscale ; 13(37): 15859-15868, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519325

RESUMO

Graphene and related materials have been widely studied due to their superior properties in a wide range of applications. However, large-scale production remains a critical challenge to enable commercial acceptance. Here, we present a facile, scalable, one-step electrochemical method for producing hybrid transition metal oxide (V, Fe, Ti, or Mn)/graphene materials (TMO-EGs) as active materials for supercapacitors. Therein, we have designed and developed a continuous flow reactor with a high production rate (>4 g h-1) of TMO-EGs, where the TMO accounts for 36 weight%. TMO-EG flakes demonstrate a moderate lateral size of up to 5 µm and a specific surface area of 64 m2 g-1. Notably, TMO-EGs present a capacitance of up to 188 F g-1 as single electrodes in 4 M LiCl. The most promising material, MnOx-EG, has been used for the large-scale production of thin-film supercapacitor devices (40 × 40 × 0.25 mm) in a commercial pilot line. Using 1 M Na2SO4 as the electrolyte, the as-fabricated devices deliver a capacitance of 52 mF cm-2, with 83% capacitance retention after 6000 charge-discharge cycles, comparable to recent reports of similar devices. The simplicity, scalability, and versatility of our method are highly promising to promote the commercial applications of graphene-based materials and can be further developed for the upscalable production of other 2D materials, such as transition metal dichalcogenides and MXenes.

5.
Angew Chem Int Ed Engl ; 60(34): 18876-18881, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34170591

RESUMO

Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b']dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2',3'-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 µA cm-2 and 120 µA cm-2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cß of the outer thiophene rings of pDTT are the water dissociation active sites, while the -C≡C- bonds function as the active sites for hydrogen evolution.

6.
Angew Chem Int Ed Engl ; 59(52): 23620-23625, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32959467

RESUMO

In this work, we demonstrate the first synthesis of vinylene-linked 2D CPs, namely, 2D poly(phenylenequinoxalinevinylene)s 2D-PPQV1 and 2D-PPQV2, via the Horner-Wadsworth-Emmons (HWE) reaction of C2 -symmetric 1,4-bis(diethylphosphonomethyl)benzene or 4,4'-bis(diethylphosphonomethyl)biphenyl with C3 -symmetric 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino[2,3-a:2',3'-c]phenazine as monomers. Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C-C single bond formation for the synthesis of crystalline 2D CPs. Powder X-ray diffraction (PXRD) studies and nitrogen adsorption-desorption measurements demonstrate the formation of proclaimed crystalline, dual-pore structures with surface areas of up to 440 m2 g-1 . More importantly, the optoelectronic properties of the obtained 2D-PPQV1 (Eg =2.2 eV) and 2D-PPQV2 (Eg =2.2 eV) are compared with those of cyano-vinylene-linked 2D-CN-PPQV1 (Eg =2.4 eV) produced by the Knoevenagel reaction and imine-linked 2D COF analog (2D-C=N-PPQV1, Eg =2.3 eV), unambiguously proving the superior conjugation of the vinylene-linked 2D CPs using the HWE reaction.

7.
Nanoscale ; 11(13): 6206-6216, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30874697

RESUMO

Titanium disulfide is a promising material for a range of applications, including lithium-ion battery (LIB) anodes. However, its application potential has been severely hindered by the tendency of exfoliated TiS2 to rapidly oxidize under ambient conditions. Herein, we confirm that, although layered TiS2 powder can be exfoliated by sonication in aqueous surfactant solutions, the resultant nanosheets oxidise almost completely within hours. However, we find that upon performing the exfoliation in the solvent cyclohexyl-pyrrolidone (CHP), the oxidation is almost completely suppressed. TiS2 nanosheets dispersed in CHP and stored at 4 °C in an open atmosphere for 90 days remained up to 95% intact. In addition, CHP-exfoliated nanosheets did not show any evidence of oxidation for at least 30 days after being transformed into dry films even when stored under ambient conditions. This stability, probably a result of a residual CHP coating, allows TiS2 nanosheets to be deployed in applications. To demonstrate this, we prepared lithium ion battery anodes from nano : nano composites of TiS2 nanosheets mixed with carbon nanotubes. These anodes displayed reversible capacities (920 mA h g-1) close to the theoretical value and showed good rate performance and cycling capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA